Unidad de Medio Ambiente
|
La enmienda orgánica local es materia orgánica —compost, estiércol curtido, restos vegetales triturados— producida en el propio campus o en su entorno inmediato, aplicada para mejorar la estructura, fertilidad y actividad biológica del suelo. Evita la dependencia de abonos comerciales y cierra el ciclo de nutrientes. Su calidad se controla mediante análisis de madurez, pH y contenido en metales pesados. En suelos ácidos del norte, se complementa con aporte puntual de cal agrÃcola; en alcalinos del sur, con compost ácido. Su aplicación debe ser estacional (otoño o primavera) y dos ... |
|
La gestión de huertos universitarios como sistemas cerrados donde los nutrientes se reciclan continuamente: compostaje de restos vegetales, uso de orina diluida como fertilizante nitrogenado (con protocolos de seguridad), y rotación de cultivos para evitar agotamiento. En una institución del sureste, tras analizar la degradación de sus suelos, implementó este sistema y en 3 años logró un aumento de materia orgánica del 1,2% al 3,8%, consiguiendo la eliminación de fertilizantes sintéticos . En el norte, se combina con cultivos de cobertura para evitar lixiviación en invierno. El a ... |
|
El ciclo cerrado de nutrientes es un principio de gestión que busca que los elementos esenciales (nitrógeno, fósforo, potasio, materia orgánica) generados en el campus —en residuos orgánicos, podas, aguas grises— se reincorporen al suelo mediante compostaje, fitodepuración o enmiendas, sin pérdidas al exterior. Implica mapear flujos, cuantificar entradas y salidas, y diseñar infraestructuras de recirculación (composteras, humedales, digestores). En universidades grandes, puede abastecer miles de metros cuadrados de jardines; en pequeñas, basta con sistemas descentralizados. Su se ... |
|
Aprovechamiento de restos orgánicos del campus para compostaje, biogás o mulching. Cierra ciclo local de nutrientes y reduce costes... ... |
|
El mantillo orgánico local es material vegetal triturado —procedente de podas del propio campus o de fuentes cercanas certificadas— que se aplica sobre el suelo para conservar humedad, suprimir malezas, enriquecer la materia orgánica y proteger raÃces. Su uso evita la compra de mantillos comerciales (a menudo de madera tropical o tratada) y cierra el ciclo de biomasa en el campus. Debe aplicarse con espesor adecuado (5–10 cm), sin contacto directo con troncos, y renovarse anualmente. En zonas secas, es clave para reducir riego; en húmedas, mejora el drenaje. Su producción in situ †... |
|
Movimiento de nutrientes esenciales, como el nitrógeno y el fósforo, a través de los ecosistemas y los organismos vivos, que es crucial para el funcionamiento de los ecosistemas y la fertilidad del suelo. ... |
|
El aprovechamiento de residuos orgánicos en el campus implica la separación en origen de restos de comida y poda para su tratamiento mediante compostaje o digestión anaerobia, transformándolos en enmiendas para suelos o biogás. Es especialmente relevante en comedores, cafeterÃas, jardines y huertos universitarios. En campus grandes, se pueden instalar compostadores comunitarios o plantas de pequeña escala; en pequeños, sistemas de compostaje doméstico gestionados por asociaciones estudiantiles. Más allá del cierre del ciclo, ofrece oportunidades para la docencia en microbiologÃa, a ... |
|
El compostaje in situ es una estrategia de gestión de residuos orgánicos que transforma los restos de poda, hojarasca y, en algunos casos, residuos de cafeterÃas o huertos universitarios, directamente en el campus, evitando transportes innecesarios y generando enmienda de calidad para los propios jardines. Su implementación exige un diseño logÃstico: ubicación de composteras protegidas, protocolos de mezcla (relación C/N, humedad, aireación), formación del personal de jardinerÃa y participación estudiantil en su seguimiento. En campus grandes o rurales, se pueden usar composteras e ... |
|
La instalación de fotobiorreactores o estanques abiertos en el campus para cultivar microalgas que absorban nutrientes (nitrógeno, fósforo) de aguas residuales tratadas parcialmente, mejorando su calidad antes de la devolución al ciclo. En una universidad con estación depuradora propia, este sistema reduce un 60% la carga de nutrientes en el efluente, y la biomasa generada se usa para biogás o como enmienda orgánica para suelos . Desde lo pedagógico, permite prácticas en biotecnologÃa y gestión de flujos. En el sur, se usan especies termotolerantes; en el norte, con mayor eficien ... |
|
El análisis de flujos de nutrientes estudia cómo elementos clave —nitrógeno, fósforo, potasio— entran, se transforman, se acumulan o se pierden en el sistema universitario: desde compostaje y fertilización de zonas verdes hasta vertidos en aguas residuales. Permite identificar fugas (por ejemplo, fósforo en efluentes que podrÃa recuperarse) e ineficiencias (exceso de fertilizantes sintéticos). Es fundamental para cerrar ciclos en agricultura urbana y reducir impactos en ecosistemas acuáticos cercanos. En zonas con suelos pobres, como parte del sureste, la recuperación de nutrient ... |
|
Sistema de cultivo sin suelo que recicla todos los nutrientes y el agua, minimizando el desperdicio. ... |
|
La inclusión obligatoria de competencias en circularidad —diseño para la durabilidad, reparabilidad, reutilización— en los planes de estudio de todas las titulaciones técnicas y de gestión, no solo en ambientales. En una institución, se creó un "módulo de circularidad" de 2 créditos en ingenierÃas, arquitectura y administración; los proyectos fin de carrera deben incluir un análisis de ciclo de vida y propuestas de cierre de flujos. El módulo obligatorio en grados técnicos democratiza la circularidad. El análisis de ciclo de vida exigible forma en pensamiento sistémico. ... |
|
La formación transversal en principios de circularidad —diseño para la durabilidad, reparabilidad, reutilización— aplicados a distintas disciplinas: desde ingenierÃa hasta diseño o administración. En una institución, se creó un "módulo obligatorio de circularidad" en todos los grados técnicos; los proyectos fin de carrera deben incluir un análisis de ciclo de vida y propuestas de cierre de flujos. El módulo obligatorio en grados técnicos institucionaliza la circularidad. El análisis de ciclo de vida exigible forma en pensamiento sistémico. ... |
|
Protocolos especÃficos para minimizar y gestionar de forma segura los residuos generados en proyectos cientÃficos —cultivos biológicos, materiales compuestos, nanomateriales—, con evaluación previa de impacto y planes de cierre éticos. En una universidad, se implementó un sistema de "ciclo de vida del residuo" donde cada proyecto incluye su plan de gestión desde la fase de diseño; en 3 años, los residuos peligrosos bajaron un 38%. El ciclo de vida del residuo exigible previene externalidades. Los residuos peligrosos –38% protegen salud y ambiente. ... |
|
Uso de compost del campus para abonar . Cierra ciclo de materia orgánica y reduce fertilizantes. EconomÃa circular en acción ... ... |