Unidad de Medio Ambiente
|
El aprovechamiento de calor residual consiste en recuperar energía térmica desperdiciada en procesos —climatización, laboratorios, centros de cálculo o cocinas— para reutilizarla en agua caliente sanitaria, calefacción o procesos industriales menores. En universidades con grandes centros de datos o hospitales universitarios, el potencial es enorme: el exceso de calor de servidores puede calentar edificios cercanos. Requiere intercambiadores de calor, redes de distribución y coordinación entre servicios. Su implementación es técnica, pero también cultural: implica romper silos ent ... |
|
Procesos tecnológicos que permiten extraer energía útil de residuos que no pueden ser reciclados materialmente, mediante incineración con recuperación energética, biogás o tecnologías de gasificación. En universidades con programas de ingeniería energética, la recuperación de energía se estudia como alternativa sostenible a la eliminación en vertedero. Los proyectos incluyen plantas piloto de biogás , incineración limpia de residuos no recyclables y investigación en nuevas tecnologías de recuperación energética. Los estudiantes diseñan, construyen y operan sistemas de rec ... |
|
Sistemas que convierten el calor residual en energía útil, utilizando técnicas como la recuperación de calor y la generación termoeléctrica. ... |
|
Técnicas para extraer y aprovechar recursos valiosos de materiales biológicos de desecho, incluyendo proteínas, enzimas, compuestos bioactivos, bioplásticos y energía biomásica. En universidades con programas de biología, biotecnología o ciencias de alimentos, la recuperación de recursos biológicos se aborda mediante investigación aplicada en laboratorios especializados. Los proyectos incluyen recuperación de proteínas de subproductos agroalimentarios, extracción de enzimas de residuos de procesos industriales, producción de bioplásticos a partir de residuos orgánicos y gene ... |
|
La implementación de sistemas de recuperación de calor residual de equipos (centrífugas, ultracongeladores) para calefacción de agua sanitaria o espacios adyacentes, maximizando la eficiencia energética. En una universidad con centro de investigación, se instaló un intercambiador que recupera el 75% del calor de los servidores; en invierno, cubre el 40% de la demanda de agua caliente en edificios cercanos. La recuperación del 75% de calor cierra flujos energéticos. El 40% de ACS cubierto reduce emisiones directas. ... |
|
Técnicas para recuperar y reutilizar materiales y energía de desechos y residuos. ... |
|
Desarrollo de instalaciones dedicadas a la recuperación y reciclaje de materiales, promoviendo la reutilización y reduciendo la necesidad de nuevos recursos. ... |
|
Prácticas y tecnologías diseñadas para reducir la pérdida de calor y mejorar la eficiencia energética en edificios y procesos industriales, como el aislamiento y los sistemas de recuperación de calor. ... |
|
Procesos tecnológicos para extraer minerales valiosos de residuos, cenizas, lodos de depuradoras o tierras degradadas, transformando materiales considerados residuales en recursos secundarios de valor económico. En universidades con programas de minería, metalurgia o ciencias de materiales, la recuperación de recursos minerales se aborda mediante investigación aplicada, desarrollo de tecnologías y formación especializada. Los proyectos incluyen lixiviación de cenizas volantes , recuperación de metales preciosos de residuos electrónicos, extracción de minerales raros de tierras rara ... |
|
Intervenciones para restaurar y proteger ecosistemas costeros degradados, incluyendo playas, dunas, marismas y zonas húmedas, ante la presión del desarrollo urbano, el cambio climático y la erosión costera. En universidades costeras o con programas de ciencias marinas, la recuperación costera incluye restauración de dunas , recuperación de playas, protección de ecosistemas de marisma y creación de barreras naturales contra la erosión. Los proyectos integran conocimientos de ingeniería costera, biología marina y ciencias ambientales. Los estudiantes participan en monitoreo de ecosi ... |
|
Intervenciones para restaurar ecosistemas de zonas húmedas degradadas por drenaje, contaminación o urbanización, devolviéndoles sus funciones ecológicas esenciales de depuración de aguas, regulación hídrica y conservación de biodiversidad. En universidades con humedales en sus terrenos o en regiones con estos ecosistemas amenazados, la recuperación incluye restauración hidrológica , eliminación de especies invasoras, revegetación con especies autóctonas y control de fuentes de contaminación. Los proyectos de recuperación se desarrollan en colaboración con administraciones am ... |
|
Técnicas especializadas para restaurar la funcionalidad ecológica de suelos contaminados, degradados o degradados por actividades humanas, devolviéndoles su capacidad de soportar vida vegetal y regular procesos biogeoquímicos. En universidades con campus industriales o en zonas urbanas degradadas, la recuperación de suelos incluye análisis de contaminación, técnicas de fitorremediación , bioremediación y mejora física-química. Los proyectos de recuperación se desarrollan en colaboración con departamentos de ciencias ambientales, química e ingeniería, creando laboratorios de ca ... |
|
Intervenciones para restaurar la funcionalidad ecológica de ecosistemas de agua dulce y marinos degradados por contaminación, sobreexplotación o alteración de hábitats, devolviéndoles su capacidad de proporcionar servicios ecosistémicos. En universidades con proximidad a ríos, lagos o costa, la recuperación de ecosistemas acuáticos incluye restauración de riberas , eliminación de contaminantes, recuperación de lechos fluviales y protección de zonas de reproducción. Los proyectos integran conocimientos de hidrología, biología acuática e ingeniería ambiental. Los estudiantes ... |
|
Estrategias para reducir el consumo sin sacrificar funcionalidad.difusores en grifos (hasta 50% menos), inodoros de doble descarga, riego por goteo con sensores de humedad o recuperación de aguas grises. En campus del sureste, son prioritarias y elegibles para fondos europeos. Para los estudiantes de ingeniería hidráulica, son prácticas reales de modelización y monitorización. Difusores y sensores de humedad y recuperación de aguas grises convierten el ahorro en una práctica técnica y cotidiana, no en un sacrificio... ... |
|
El seguimiento y cierre de ciclos de nitrógeno, fósforo y potasio —desde compostaje y fertilización hasta vertidos en aguas residuales— para evitar fugas y contaminación difusa. En una universidad del sureste, tras un análisis que mostró pérdida de fósforo en efluentes, se implementó separación de orina en baños ecológicos; en 2 años, la recuperación para fertilización aumentó un 200%, y la compra de enmiendas bajó un 85%. La recuperación de fósforo +200% cierra ciclos esenciales. La compra de enmiendas –85% asegura autonomía real. ... |